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Abstract
Despite the advances in reinforcement learning
in a wide variety of applications, the domain of
multi-agent systems remains vastly unexplored.
In this work, we discuss strategies for approach-
ing multi-agent reinforcement learning problems
by the tool of Pommerman, an online multi-agent
research testbed. We present and evaluate algo-
rithms for gameplay involving independent and
coordinated agents and discuss practical concerns.

1. Introduction
Reinforcement learning (RL) has recently been succesfully
applied to solve challenging problems, from game play-
ing (Mnih et al., 2015) to robotics (Matas et al., 2018).
Most of the successes of RL, however, have been in single
agent domains, where either the environment is stationary
or modeling/predicting the behaviour of other actors in the
environment is largely unnecessary.

However, there are a number of important applications that
involve interaction between multiple agents, where emer-
gent behavior and complexity arise from agents co-evolving
together. For example, multi-robot exploration (Matignon
et al., 2012), multiplayer games (Peng et al., 2017) etc.
all benefit from a multi-agent perspective of the system.
Multi-agent modeling has also shown tremendous potential
in efficient routing in communication networks and sensor
networks. Additionally, the recent demonstrations of multi-
agent self-play in AlphaGo (Silver et al., 2016) has paved
way for a new training paradigm. Successfully scaling RL
to environments with multiple agents is crucial to building
AI systems that can productively interact with each other.

Unfortunately, traditional reinforcement learning ap-
proaches such as Q-learning or vanilla policy gradient are
poorly suited to multi-agent environments. A multi-agent
system faces various challenges which makes it difficult to
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predict the outcome of a particular plan and thus compli-
cates finding good plans: (i) outcome uncertainty, due to
non-stationarity of the environment from the perspective
of any individual agent in a way that is not explainable
by changes in the agent’s own policy (Oliehoek & Amato,
2016); (ii) state uncertainty, due to partial observability,
corrupted/faulty sensor measurements etc. which further
complicates the planning and control problem, often lead-
ing to perceptual aliasing; (iii) huge joint action space, for
the multi-agent Markov game (Littman, 1994) thus formed.
All routines are exponential in the size of action space; (iv)
credit assignment to individual agents, especially when the
environment offers sparse, common rewards to the system
(Minsky, 1961). These present learning stability challenges
and prevent the straightforward use of past experience re-
play, which is crucial for stabilizing deep Q-learning. Policy
gradient methods, on the other hand, usually exhibit very
high variance when coordination of multiple agents is re-
quired. Model-based policy optimization can be used to
learn optimal policies via back-propagation, but this requires
a (differentiable) model of world dynamics and assumptions
about the interactions between agents.

While a plethora of methods employing clever learning
techniques have been proposed recently, most of them are
extremely data and compute hungry. Over shorter training
periods, such an end-to-end learning method also fails to use
domain knowledge and tries to learn strategies by exploring.
Towards this direction, we explore algorithms for RL in
environments with multiple agents with a focus on minimiz-
ing the amount of time and compute resources required for
training by using domain knowledge and supervision. We
use the challenging yet interpretable gaming environment
of Pommerman (Resnick et al., 2018), which comprises a
four-way battle royale gameplay, for deploying and testing
our strategies. We split our methods into two broad direc-
tions: (i) individual gameplay, where the goal of the agent is
to be the last one remaining and no cooperation/competition
is involved, and (ii) 2x2 team-based gameplay, where teams
of two agents each compete to be the last team standing.

The remainder of the report is organized as follows: in sec-
tion 2 we present preliminaries to analyze a multi-agent
system and discuss related work. Section 3 describes the
problem setup and choice of features. Section 4 presents
methods, evaluation and discussion of strategies for the indi-
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vidual four-way gameplay, and section 5 presents methods
and discussion of strategies for 2x2 teamplay. Finally, we
conclude with a discussion of implications, challenges and
future directions of work in section 6.

2. Preliminaries
2.1. Q-Learning

Q-Learning (Watkins & Dayan, 1992) has been central
to the task of control for a Markov Decision Process
(S,A, T,R, γ). The objective here is to learn the action
value function Qπ(s, a) for policy π by minimizing the
expected loss L(θ).

L(θ) = Eπ
[
(Qθ(s, a)− (r + γmax

a′
Qθ′(s

′, a′))︸ ︷︷ ︸
target value

)2
]

(1)

Q-Learning in its vanilla form tends to be highly unstable es-
pecially in the form where Deep Neural Networks (DNNs)
are used for function approximation. Deep Q-Learning
(Mnih et al., 2015) was proposed to overcome this problem
by introducing the notion of target network whose parame-
ters are kept constant for a finite number of training steps
and is used to generate the values for y. The other tech-
nique used to stabilize the performance and overcome the
problem of catastrophic forgetting is to use an experience
replay buffer (Lange et al., 2012) from which transitions are
sampled at random.

2.2. Policy Gradient Methods

Policy Gradient (PG) methods differ from Q-Learning and
other value function estimation methods in the sense that
they explicitly learn a stochastic policy πθ. Choosing the
maximization objective J(θ) to be the expected long-term
reward over a trajectory τ induced by πθ, we get the gradient
as

∇J(θ) = Eπθ
[
∇logπθ(τ)r(τ)

]
(2)

The gradient comes out to be independent of the environ-
ment dynamics and the ergodic distribution. This means we
can now just run Monte-Carlo simulations and approximate
the gradient to find the best parameters and the computer gra-
dient is an unbiased estimator of the true gradient. Replacing
r(τ) by the discounted returns gives us the REINFORCE
algorithm (Williams, 1992).

2.3. PG & High Variance

The objective used in PG methods leads to very high vari-
ance models. Any erratic trajectories which produce unusual
rewards would cause an unexpected change in the resulting
distribution. To mitigate this problem, an idea that helps re-
duce the variance is to instead maximize an objective which

keeps track of the relative reward difference, leading to an
algorithm called REINFORCE with Baseline. The gradient
thus becomes

∇J(θ) = Eπθ
[
∇
( T∑
t=1

logπθ(st|at)
)
(Gt − b)

]
(3)

where b is the introduced baseline. Choosing the right base-
line is a task in its own right, and various methods resolve
this using a parametrized estimate of the value function
V η(s) as the baseline, commonly known as the critic – such
a model is called an Actor-Critic (AC) model. The differ-
ence of the objective and the baseline is also known as the
advantage estimate.

The problem of high-variance is exacerbated in multi-agent
settings since an agent’s reward usually depends on the
actions of several other agents. Trust region policy optimiza-
tion methods (Schulman et al., 2015) maximize an objective
function similar to simple PG subject to a constraint on the
size of policy update. However, TRPO is relatively com-
plicated and not compatible with architectures that include
parameter sharing. Proximal policy optimization family of
algorithms (Schulman et al., 2017) attain the data efficiency
and performance of TRPO while using more efficient opti-
mization and generalize to a wider range of applications. In
order to stay close to the current policy at each step, PPO
optimizes a clipped objective as follows

LCLIP(θ) = Et
[
min(rt(θ)Â(θ), clip(rt(θ), 1− ε, 1 + ε))

]
(4)

where rt(θ) is the ratio πθ(at|st)
πθold (at|st)

, and ε is the clipping
hyperparameter.

2.4. Multi-Agent AC

As discussed in section 1, the action space in a multi-agent
system grows exponentially with the number of agents. This
necessitates the need of a decentralized policy which only
depend on the local observations of the agents (Kapoor,
2018). This also helps account for complications owing
to partial observability. At training time, such a system of
decentralized agents (actors) can be augmented with a cen-
tralized critic providing indirect observations in a laboratory
setting. The theoretical foundations governing this frame-
work are covered in detail in (Oliehoek & Amato, 2016).
Two recent approaches of interest in this direction use (i)
counterfactual baselines for an agent a which allows the
centralized critic to reason about counterfactuals in which
only a’s actions change (Foerster et al., 2018), and (ii) infers
policies of other agents in an AC framework and is able to
learn policies involving complex multi-agent coordination
(Lowe et al., 2017).
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2.5. Imitation Learning

While deep RL systems have achieved excellent perfor-
mance in several difficult decision-making problems, they
tend to be data hungry. In fact, their performance during
learning can be extremely poor. This may be acceptable
for a simulator, but it severely limits the applicability of
deep RL to many real-world tasks, where the agent must
learn in the real environment. Imitation learning algorithms
concern with matching the performance in simulation. A
popular algorithm, DAGGER (Ross et al., 2011), iteratively
produces new policies based on polling the expert policy
outside its original state space, showing that this leads to
no regret over validation data in the online learning sense
and requires the expert to be available during training to
provide additional feedback to the agent. The early suc-
cesses of AlphaGo (Silver et al., 2016) rely on pre-training
from an expert human database, before interacting with the
real task. Deep Q-Learning from Demonstrations (DQfD)
(Hester et al., 2017) is a recent method that leverages small
sets of demonstration data to accelerate the learning process,
by combining temporal difference updates with supervised
classification of the demonstrators action.

3. Setup
Pommerman1 is a testbed for multi-agent reinforcement
learning, based on the popular game Bomberman. Every
game is played on a 11 × 11 game with 4 agents, each
spawned at the corners of the grid. The grid can be free, or
have rigid or wooden walls in each block. Rigid walls are
indestructible and an agent can neither pass through those
walls nor blast them through a bomb. The wooden walls can
broken by a bomb, and may release a fixed set of power-ups.
Until the wooden walls are broken, they cannot be traversed
through. More details on the environment can be found in
appendix A.

There are 2 game settings in which the game can be played,
namely Free-For-All and Teamplay. In FFA or Battle Royale,
the 4 agents play against each other with the aim of longest
survival, i.e. the agent who survives till the end wins and
gets a reward of 1. The other agents get a reward of−1. The
Teamplay variant involves the players playing in teams of 2
without communicating with each other. Both the players
get a reward of 1 if their team wins, −1 if they lose or 0
otherwise.

Feature Engineering

For an agent in the Pommerman environment, the state
space consists of its resources, state of the grid and location
of bombs, agents and power-ups. Owing to the effects

1Read more at https://www.pommerman.com/

Figure 1. Reduced perceptual state of an agent with a visual field
of depth 2

Feature Dimension
Enemy positions p× p
Rigid wall blocks p× p

Wooden wall blocks p× p
Passage blocks p× p

Bomb life p× p
Active flame blocks p× p

Bombs p× p
Power-ups p× p

Ammunition count 1
Bomb strength 1

Kick 1
Total (p× p× 8) + 3

Table 1. Choice of features for a Pommerman agent with a percep-
tual state of size p× p

of actions by multiple agents, the environment is largely
non-Markovian. We use a finite visual field of depth to
form a reduced perceptual state of the system (Tan, 1993).
Note that while this induces partial observability, it helps
ameliorate non-Markov nature of the whole environment
and explicitly helps an agent to focus on its surroundings for
taking the next action. For the purpose of experiments, we
use a visual field of depth 2, i.e., a 5× 5 reduced perceptual
state (see figure 1). Table 1 lists our choice of features and
corresponding dimensions for a p× p perceptual state. Note
that this state space always has the agent at its centre, and
positions are relative to the agent.

4. FFA Gameplay
The simplest version of the game consists of four indepen-
dent agents competing in Battle Royale – last agent standing

https://www.pommerman.com/
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Figure 2. Moving average of reward with episodes while training

wins. A rule-based ”simple planner” is made available with
the Pommerman environment, as a baseline agent. We inves-
tigated the performance of the agent after training it using 2
different approaches – PPO and DHqD (see section 2.3). De-
pendence on choice of feature space and reduced perceptual
state was also considered while evaluating the agents.

4.1. PPO Agent

Proximal policy optimization algorithms are well suited
for policy optimization on large state/action spaces, like
that of Pommerman. We consider a PPO agent using the
naive feature set given by the observations of the gaming
environment and a dense policy network (for architecture,
see figure 4) to learn suitable policies for the FFA game-
play. To improve the performance of the agent, we impose
domain knowledge in form of the features discussed in sec-
tion 3. The agents were trained by playing against a series
of random and rule-based opponents. Training curves of
the agents with and without feature modifications in terms
of average reward and lifespan (timesteps per episode) are
shown in figures 2 & 3, respectively.

Evaluation & Discussion

We notice that despite using an improved feature set, the
PPO agent seldom manages to beat a single rule-based agent.
Exhaustive results with multiple rule-based agents (see ta-
bles 2 & 3) highlight the gap in performance as the difficulty
increases. Analyzing the gameplay reveals an interesting
insight – the agents learn that a bomb is dangerous (and can
lead to suicide) and hence deter from using it. The reader
is encouraged to view the supplementary video for better
understanding (Authors, 2018). Therefore, the agent does
not learn how to win; it simply learns to not die!

Figure 3. Moving average of timesteps per episode with episodes
while training

Algorithm W1 W2 W3
PPO without Feat. Mod 47.5 32 12

PPO with Feat. Mod 48.5 22.5 17.5
DQfD with Feat. Mod 51.6 24.2 20.8

DQfD (small net) 50.1 23.1 19.2
DQfD (deep net) 52.3 25.1 22.6

Table 2. Comparing the winning percentages of the algorithms for
the 3 configurations, i.e. against differnt number of simple agents
(1,2,3 corresponding to W1, W2 and W3)

Algorithm T1 T2 T3
PPO without Feat. Mod 282.4 257.6 226.7

PPO with Feat. Mod 256.4 212.2 192.2
DQfD with Feat. Mod 250.5 243.2 228.9

DQfD (small net) 261.5 221.7 200.8
DQfD (deep net) 274.2 265.4 240.1

Table 3. Comparing the average episode duration of the algorithms
for the 3 configurations, i.e. against differnt number of simple
agents (1,2,3 corresponding to T1, T2 and Th3)
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Figure 4. Network architecture of the policy network used for PPO agent. 203 features are derived from the perceptual state of teh agent
as per table 1 and passed through 3 dense layers consisting of 256, 128, 64 neurons each.

4.2. Learning from Demonstrations

To allow usage of domain knowledge and carefully train
the agent to not learn undesirable policies, we tried using
a supervised, imitation learning approach to the learning
problem, like the use of a human expert in AlphaGo. Since
the simple agent is quite adept at playing the game, one to
way to improve the performance of the learning agent is
training it to behave like the simple agent first and then seek
subsequent improvements. We generated multiple episodes
of 4 simple agents competing against each other, and then
used these episodes to pre-train a Deep Q-Learning from
Demonstrations (DQfD) agent for 1000 such demonstra-
tions. The feature modifications and the perceptual state
were preserved.

After pre-training the DQfD agent and training it in the ac-
tual environment, we observe significant improvements over
the PPO agent. The video clearly demonstrates the improve-
ments. The DQfD agent explores the board efficiently while
learning to plant bombs and evading them. It also learns
to kick the bombs and trap other agents into a corner and
bombing them. Comparative results in terms of win rate
and lifespan of the agents with modifications in network
architecture and feature set can be found in tables 2 & 3.
The reader is directed to view the supplementary video for
further results (Authors, 2018).

5. Towards Teamplay 2

The team version of the game comprises of two teams of
two agents each combatting each other. Partial observability
is implemented as a restricted field of depth and communi-
cation between agents may be allowed. For the discussion
in this section, we do not consider partial observability and
communication.

5.1. Non-cooperative Agents

A baseline approach to solving teamplay would require
that the agents do not target each other as enemies. In
this regard, we consider an approach where both agents
are trained and deployed independently, but are invisible to
each other. That is, each agent only sees two enemies in
the grid. A simple implementation in Pommerman shows
that while this ameliorates the risk of attack within a team,
no strategy can be learned and a need for a more evolved
approach arises.

5.2. Cooperative Super Agent

An interesting way to train a pair of agents is to treat them as
a cohesive super agent. Such an agent models the environ-
ment with the same state space of an individual agent and
a joint action space given as As = A1 × A2. Since most
RL libraries support only single agent training (see below),
this approach is naturally suited for a direct implementation
with an optimized library like TensorForce.

2This section comprises of ideas encountered during the later
half of the project. Since this was not our main focus, we only have
preliminary implementations and no strong results to compare. We
present a brief summary of our approaches here.
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Training such an agent is tricky, since writing a rule-
based/heuristic agent for demonstration (as was the case
with FFA, see section 4.2) is significantly more complicated
than a single agent. To address this, we use a DQfD agent
pre-trained on demonstrations by a team of simple agents
(rule-based, single player) to learn basic heuristics. This is
followed by Q-learning from deployment, in order to better
learn strategies and team-specific ideas. Progress is slow on
testing these ideas, owing to time constraints and limited
resources (in terms of libraries and compute) for multi-agent
learning, but we hope to continue exploring this direction in
the future.

Remarks on Multi-Agent Training with Tensorforce

Like most RL libraries, TensorForce doesn’t support training
multiple agents using the same runner object3. A possible
way to train multiple agents with such a restriction would
be to train them in round-robin fashion, with batch updates,
i.e. one agent is being trained for a few episodes while the
others are held fixed and so on. While this is not the most
accurate way to train a multi-agent systems, the heuristic
enables ease of training using optimized libraries for testing
our hypotheses.

6. Conclusion
In this work, we discuss various strategies for solving multi-
agent reinforcement learning problems using the Pommer-
man testbed. For single agent FFA gameplay, we evaluate
a policy gradient agent based on PPO for finding suitable
strategies. However, we notice that despite tuning the net-
work architeture and feature set, the designed agent is unable
to perform significantly better than a rule-based agent. Fur-
ther scrutiny revealed that the agent settles for a policy of
not using any bombs and evading them – learning to not
die, rather than to win. To combat this and impose domain
knowledge, we use imitation learning-based DQfD and use
a rule-based agent to pretrain our agent from demonstrations.
We see that this agent performs significantly better than the
PPO agent and can explore the map, plant bombs, strategize
etc. Further, we also discussed strategies for teamplay and
possible implementations using an optimized off-the-shelf
library like TensorForce.

Despite clever tuning and heuristics, our best agent only
wins the toughest challenge ∼ 25% of the times. This
calls for more careful scrutiny of the problem and better
approaches to combine domain expertise with fast learning.
The problem of training multi-agent systems and devising
optimal policies for the joint state/action spaces is another
possible path to explore.

3https://github.com/reinforceio/tensorforce/issues/371
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A. Pommerman – Environment Description
Pommerman is a testbed for multi-agent reinforcement learn-
ing, based on the popular game Bomberman. Every game is
played on a 11× 11 game with 4 agents, each spawned at
the corners of the grid. The grid can be free, or have rigid or
wooden walls in each block. Rigid walls are indestructible
and an agent can neither pass through those walls nor blast

them through a bomb. The wooden walls can broken by a
bomb, and may release a fixed set of power-ups. Until the
wooden walls are broken, they cannot be traversed through.

The game begins with the agent having one bomb. Every
time it deploys a bomb, the ammo decreases by 1. After the
explosion of the bomb, the ammo count again increases by
one. The agent also has a blast strength, with a default value
of 3. Every bomb laid by the agent is set to that agent’s
blast strength, which is how far in the vertical and horizontal
directions that bomb will effect. Every bomb has a life of
10 steps. When the agents move 10 steps after planting the
bomb, it explodes and destroys any wooden walls, agents,
power-ups or other bombs in its range (blast strength).

There are 2 game settings in which the game can be played,
namely Free-For-All and Teamplay. In FFA or Battle Royale,
the 4 agents play against each other with the aim of longest
survival, i.e. the agent who survives till the end wins and
gets a reward of 1. The other agents get a reward of -1. The
Teamplay variant involves the players playing in teams of 2
without communicating with each other. Both the players
get a reward of 1 if their team wins, -1 if they lose or 0
otherwise.

The game ending depends on the variant of the game being
played. In the FFA variant, the game ends when only one
agent remains, or both the last remaining agents die and
the game ends in a tie. In teamplay, the game ends when
both the players of a team die. Ties can happen when the
game does not end before the max steps or if both teams’
last agents are destroyed on the same turn.

A.1. Actions and Observations

At any instant of the game, these are the six actions from
which the agent can choose:

1. Stop: This action is a pass

2. Up: Move up if possible, else stay at the same position

3. Down: Move down if possible, else stay at the same
position

4. Left: Move left if possible, else stay at the same posi-
tion

5. Right: Move right if possible, else stay at the same
position

6. Bomb: Lay a bomb

After every action it takes, the agent receives the following
dictionary of observations:

• Board: 121 Integers. The flattened board. All squares
outside of the agent’s purview will be covered with the
fog value (5).
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• Position: 2 Integers, each in [0, 10]. The agent’s (x, y)
position in the grid.

• Ammo: 1 Integer. The agent’s current ammo.

• Blast Strength: 1 Int. The agent’s current blast
strength.

• Can Kick: 1 Integer, 0 or 1. Whether the agent can
kick or not.

• Teammate: 1 Integer in [-1, 3]. Which agent is this
agent’s teammate. For FFA, this will be -1.

• Enemies: 3 Integers, each in [-1, 3]. Which agents
are this agent’s enemies. If this is a team competition,
the last Int will be -1 to reflect that there are only two
enemies.

• Bombs: List of Integers. The bombs in the agent’s
purview, specified by (X, Y, Blast Strength).


