
 

CS 419M 

VOICE CONVERSION 
Final Report 

 

Team Members 

Arpan Banerjee 150070011 

Nihal Singh 150040015 

Srivatsan Sridhar 150070005 

 

Abstract 

The Voice Conversion task involves converting speech from one speaker’s (source) voice to 

another speaker’s (target) voice. Machine learning methods can be made to perform better 

than plain signal processing techniques as they can take into account multiple features of 

speech which cannot be characterized easily by signal processing techniques. In this 

project, we have explored the use of Recurrent Neural Networks (RNNs) for Voice 

Conversion. We have explored multiple variations of RNNs using LSTMs and GRUs and 

observed the effects of changing various parameters of the models. Our approach uses 

two independently trained neural networks - one which converts source speech to 

phonemes and another which converts phonemes to target speech. We will present the 

results achieved by both the networks for these different parameters.   

 

 



 
 

Table of Contents 

Team Members 1 

Abstract 1 

Table of Contents 2 

Introduction 3 
Problem Description 3 
Applications of Voice Conversion 3 
Model Architecture 3 
Datasets 4 
Evaluation 4 

State of the art 5 
Existing Techniques 5 

Methodology Used 6 
Background 6 
Net1 - Speech to Phonemes 6 
Net2 - Phonemes to Target Speech 10 

Preparing the Input Data 10 
Model Structure 10 

Multitask 11 
Training 11 
Converting Magnitude Spectrogram to Waveform 12 

Experiments and Results 13 
Net 1- 13 
Net 2- 13 

Future Work and Scope 14 

Appendix : Detailed Report of Experiments 15 
Net1 15 
Net2 16 

   

 
2 



 
 

Introduction 
 
Problem Description 

This project aims to convert one person’s (source) voice into another person’s (target) voice.  

The two main questions about a voice conversion system are: 1) “How natural does the 

converted voice sound?” and 2) “How similar does the converted voice sound to the target 

voice and the source voice?”.​ ​Earlier, signal processing was used to tackle this problem. 

However, with signal processing, only the pitch and frequencies of the voice are modulated. 

Applying machine learning techniques to this problem allows us to factor in other 

characteristics of speech such as stress on certain syllables and the timbre of the voice. 

Applications of Voice Conversion 

Voice Conversion finds its use in automatic dubbing for movies where one can change the 

speech into the desired actor’s voice. Voice conversion is also useful in automatic speech 

translation. In the setting of an international conference, for example, the speech of a 

dignitary can be translated from a foreign language by a translator and then converted 

back to the original speaker’s voice. It can also be used to impersonate somebody’s voice, 

and can be used against another emerging technique that is voice encryption. 

Model Architecture 

We have used a sequence to sequence approach using Recurrent Neural Networks. The 

architecture is divided into two stages. The first stage (Net1) comprises of converting 

MFCCs (Mel Frequency Cepstral Coefficients) extracted from the source waveform to 

phonemes. These are fed into the next neural network (Net2) which converts phonemes to 

the target waveform. 

We have tried different architectures for both the networks, including variations of LSTMs 

and GRUs. We have explored the effects of changes in the models such as varying the 

number of hidden layers, dropout rate and creating a pyramidal network structure. We 

have trained both the networks individually for these different cases and observed their 

effect. 

 
3 



 
 

Datasets 

We have made use of the TIMIT dataset which has frame level phoneme transcriptions for 

utterances by 630 speakers, for training the first neural network. In addition, we’ve used 

the CMU Arctic dataset for training our second neural network. The Arctic dataset consists 

of 1150 utterances from a single male and female speaker (target). 

Evaluation 

The common method to evaluate a speech recognition model that converts waveform to 

phonemes consists of calculating the Phoneme Error Rate (PER). PER can be understood as 

the edit distance between two sequences, i.e. the minimal number of insertions, deletions 

and substitutions required to convert one sequence to another. 

However, we are using Net1 to get phoneme labels per frame which are of importance 

while converting to target waveform. PER is calculated for the phoneme sequence (without 

repeats). The metric of accuracy we’ve used is a straightforward 1/0 approach i.e. whether 

the predicted phoneme at a frame matches the actual label or not. It is important to note 

here that the output for Net1 is a sequence of the length of the number of frames in the 

audio i.e. it consists of repeated phonemes, instead of the actual phoneme sequence over 

which PER can be calculated. For this reason, we’ve not been able to benchmark our results 

against state of the art. 

For speech synthesis tasks, a metric known as the Mean Opinion Score (MOS) exists. Mean 

Opinion Score is a subjective measure of voice quality, and is a way to assess human users’ 

opinion of the speech. It is a rating from 0 to 5 for sound quality averaged over a number of 

users. (1: Completely Unnatural, 2: Mostly Unnatural, 3: Equally Natural and Unnatural, 4: 

Mostly Natural, 5: Completely Natural) 

We would be evaluating Net2 by just listening to the output audio. We will not be using an 

MOS score due to lack of an able panel of listeners who will give the scores. 

 

 

 
4 



 
 

State of the art 

For the approaches, we’ve undertaken, i.e. Net1 which converts Waveform to Phonemes 

has a state of the art Phoneme Error Rate of 16.5% on TIMIT using Hierarchical maxout 

CNN + Dropout. [Ref: ​Toth et al.​] 

Net 2, best resembles DeepMind’s WaveNet, which is a generative model to synthesize raw 

audio. The MOS score for WaveNet on US English is 4.55 and with Mandarin 4.21, making it 

very close to human level performance. [Ref: DeepMind’s ​blog​, ​paper​] 

Lately, state of the art for end to end voice conversion models use Generative Adversarial 

Networks (GANs). The Voice Conversion Challenge 2018 results show the best MOS of just 

above 4, for various tasks. 

Existing Techniques 

Tacotron (Wang et al.)​ is a text to speech end to end system achieving an MOS of 3.82. It 

introduces CBHGs (1-D Convolution Banks, Highway network and GRU)​ ​as an effective 

sequence to sequence model. 

Attention mechanism is also used which calculates different weights for the input 

sequence, thus allowing the decoder to figure out which of the elements of the input 

sequence are most relevant. 

   

 
5 

https://link.springer.com/content/pdf/10.1186%2Fs13636-015-0068-3.pdf
https://deepmind.com/blog/wavenet-generative-model-raw-audio/
https://arxiv.org/pdf/1609.03499.pdf
https://arxiv.org/abs/1703.10135


 
 

Methodology Used 
Background 
Voice Conversion may be 1) ​end-to-end voice conversion​ or 2) a ​combination of speech 
recognition and speech synthesis​.  
 
End-to-end systems use a single system to convert the source voice to target voice. One 
method we studied uses multiple iterations of sequence-to-sequence models, using GRUs 
and phased LSTMs with attention mechanism. Some methods use a mid-level phonetic 
representation at the intermediate stage. One such method is to use a deep auto-encoder 
to obtain compact representations of the spectra of speakers, a neural network to convert 
them to another speaker, and an auto-decoder to convert it back to speech [​S. H. 
Mohammadi and A. Kain​]. End-to-end voice conversion, in general, requires parallel 
training data (same sentences spoken in source and target voices). It also requires some 
more techniques such as Dynamic Time Warping in order to align the similar frames of the 
source and target. 
 
We have used the second type of method, where one network (Net1) converts the speech 
into phonemes (speech recognition) and another network (Net2) converts the phonemes 
into the target voice (speech synthesis). This method does not require parallel training 
data, so it does not impose such restrictions on the dataset. This method is also much 
simpler and easier to implement. Training becomes easy as the two networks can be 
trained and evaluated independently. 
 

Net1 - Speech to Phonemes 

Dataset 

Net1 makes use of the wav files from the TIMIT dataset as input. These consist of 

utterances of 630 speakers, of phonetically rich sentences. There are a total of 4620 files 

constituting the Training set and 1680 files constituting the Test set. The wav files are 

sampled at 16000 Hz and are of varying lengths. We also have the corresponding 

phonemes along with their start and end times in the audio. These are converted to per 

frame phonemes where all the frames between the start and end time of a phoneme are 

labelled the same. A one hot representation of these phonemes forms the output of the 

network.  

 
6 

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7078543&isnumber=7078533
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7078543&isnumber=7078533


 
 

MFCCs 

The first step is to compute the MFCCs of the waveform. MFCCs or Mel Frequency Cepstral 

Coefficients can be viewed as a representation of speech from which phoneme extraction 

is easier. MFCCs are popularly used in a variety of speech processing tasks because they 

strongly relate to human perception. The frame size used is 25ms and the hop size is 5ms. 

The following figure illustrates the calculation of MFCCs. 

 
Image source: ​Detecting Patients with Parkinson's disease using MFCCs... 

Preparing Input Data 

The dataset consisted of files of varying lengths. For every frame, we had a total of 40 MFCC 

values. To feed the input we create an array of dimensions (BATCH_SIZE x TIME_FRAMES x 

40), where BATCH_SIZE is the number of samples passed at once per batch, TIME_FRAMES 

is the number of frames per file and 40 is the number of MFCC features.  

One issue we faced is that the wav files used as input are of varying length. Our first 

attempt was to pad the shorter wav files with zeros at the end. This had two problems : the 

input matrix now contained too many zeros, and we ran out of GPU memory. Thus we took 

an approach of selecting a number of random slices of 2 seconds length from the wav files. 

This forms our batch for training the network. The samples are resliced (to get different 

2-second samples from the wav files) once every few epochs. The MFCCs are calculated for 

these samples, and they are normalized by subtracting the mean and dividing by the 

standard deviation of the training samples. This forms the input of the network. 

 
7 

https://www.researchgate.net/figure/Block-diagram-of-Mel-Frequency-Cepstral-Coefficients-MFCCs-extraction_fig1_280027126


 
 

Model Structure 

Each hidden layer of Net1 consists of two Long Short Term Memory (LSTM) cells, one for 

the forward direction and one for the backward direction (bidirectional RNN). The figure 

below depicts this model. The number of layers and the number of units in each layer are 

parameters that we have varied across different tests. The output of the last layer is a 

probability distribution over the phoneme classes (known as PPGs - Phonetic 

PosteriorGrams). We then take an argmax to determine the most likely phoneme for each 

time frame.  

 The changes that we further made to this structure are: 

● Using bidirectional networks instead of unidirectional 

● Changing LSTM cells to GRU cells 

● Changing the number of hidden layers and number of units in each layer 

● Adding dropout to the network 

 

Figure​: Net1 model 

 
8 



 
 

 

 

Figure​: Bidirectional RNN 

Figure Source: ​https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66 

 

Training 

The loss function that we have used is a Cross-Entropy loss after using a softmax activation 

on the final layer outputs. We have used the Adam Optimizer to minimize this loss. The 

accuracy of Net1 is characterized by the percentage of phonemes correctly classified per 

frame. We evaluate on both the training and test set and plot the training and test error for 

each epoch. 

 

Figure​: Stage 1 - Waveform to phonemes 

 

 

 
9 

https://towardsdatascience.com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66


 
 

Net2 - Phonemes to Target Speech 

Dataset 

For training Net2, we use the ​CMU Arctic​ dataset. This dataset has 593 train and 539 test 

samples of individual speakers of varying accents and genders which makes it a good 

dataset for training target voices. The phoneme label along with the end time (in secs) for 

each are available in the transcribed label files. We have trained our model on one of the 

speakers only. Half of the audio files were used as the training set and half were used as 

the test set. 

While the TIMIT set uses the label ​‘h#’ ​for pauses, Arctic uses the label ​‘pau’​. Thus we had to 

convert the ​‘pau’​ to ​‘h#’​ in the arctic dataset. 

Preparing the Input Data 

In a manner similar to Net1, we create a batch using randomly selected 2-second samples. 

The phonemes per frame are represented by one-hot vectors. To feed the input we create 

an array of dimensions (BATCH_SIZE x TIME_FRAMES x 61), where BATCH_SIZE is the 

number of samples passed at once per batch, TIME_FRAMES is the number of frames per 

file and 61 is the number of phoneme classes. 

Model Structure 

The initial structure used for Net2 was similar to Net1. The output of Net2 is the 

log-magnitude of the STFT of the audio signal (257 values per frame). This is because 

reconstruction of an audio signal is better from the STFT than from the MFCCs.  

The first structure that we tried was a bidirectional GRU network, like Net1. Next, we 

implemented a ​pyramidal network structure​ in which the number of units in each 

hidden layer increases from the input (61) to the output (257). The pyramidal structure gave 

a much lesser mean squared error compared to same number of units in each layer. 

 
10 

http://www.festvox.org/cmu_arctic/


 
 

Multitask 

 Training a deep learning model end-to-end, ​forces​ the model to implicitly learn 

intermediate representations between the input and output. These states may have no 

meaning at all. For networks having meaningful intermediate states, domain knowledge 

can be leveraged to explicitly learn intermediate states. Using intermediate representations 

as auxiliary supervision can potentially give the best of both: end-to-end systems and 

pipelined approaches. [Ref: ​Toshniwal et al​]. We’ve used the multitask approach to train the 

network as per both the mel spectral coefficients (as an intermediate representation) and 

magnitude spectrum which forms the final output. 

 

Figure​: Multitask with pyramidal structure 

Training 

The loss metric that we have used is a Mean Squared Error between the predicted and 

actual magnitude spectrum values. For the multitask network, the loss function is the sum 

of mean squared errors of the mel spectrum and the magnitude spectrum. We have used 

the Adam Optimizer to minimize this loss. The accuracy of Net2 is indicates how off our 

predicted values are from the actual magnitude spectrum values. Akin to Net1, we evaluate 

on both the training and test set and plot the training and test error for each epoch. 

 
11 

https://arxiv.org/abs/1704.01631


 
 

 

Figure​: Stage 2 - Phonemes to waveform 

 

Converting Magnitude Spectrogram to Waveform 

We construct the target voice wav file from the magnitude waveform obtained as output of 

Net2. Since we only have the magnitude spectrum and no information about the phase, 

this reconstruction will not be perfect. For this, we use an iterative algorithm called the 

Griffin-Lim algorithm [Ref: ​Tacotron (Wang et al.)​]. It begins with a random initialization of 

the phase spectrum. In every iteration, it computes the inverse-STFT, then re-estimates the 

phase of the STFT. When applied to the magnitude spectrum of a wav file itself, we found 

that the algorithm reconstructs the audio which sounds as good as the original.   

 
12 

https://arxiv.org/abs/1703.10135


 
 

Experiments and Results 

We’ve performed extensive experimentation for both the neural networks varying 

hyperparameters including number of layers stacked in the LSTM cell, number of hidden 

units each cell emits, dropout probabilities as well as trying out different model structures. 

The detailed results of all the experiments are provided in an ​appendix​ at the end of the 

report. A summary of the results is as follows: 

Net 1- 

The best accuracy we got on Net1 was just over 70%. This accuracy is a measure of the per 

frame phoneme classification. Net 1 does not output the actual phoneme sequence. For 

this reason, we haven’t calculated the PER and have not benchmarked our results. 

For predicting the phonemes from the input wav, Net1 does a decent job on clean 

American accent. More particularly, it performs well on the TIMIT and arctic test set. Quite a 

few of the misclassifications are due to predicting similar sounding (but different 

phonemes) in intermediate frames (for eg- ‘​ae​’ instead of ‘​aa​’). 

For Net1, using LSTMs works better than using GRUs. This is owing to the ability of LSTMs to 

capture the link between the long chain of repeated phonemes. The best accuracy was 

obtained for a bidirectional LSTM with 2 hidden layers with 200 nodes each and dropout 

keep probability of 0.6. 

Net 2- 

Predicting Magnitude Spectrum: ​Bidirectional LSTM works out better in this case. 

Pyramidal network structure yields a marginal decrease in MSE. 

Predicting Mel Spectrum and Magnitude Spectrum, multitask:​ Bidirectional GRU works 

out better in this case. Pyramidal network structure yields quite some decrease in MSE. 

We found that the accuracy of Net1 didn’t matter as significantly as the accuracy of Net2 

did while converting a voice sample end-to-end. Many of the phoneme errors are to related 

phonemes and often a few phoneme errors in a chain of repeated phonemes does not 

 
13 



 
 

affect the audio much. On the other hand the spectrum prediction has a large impact on 

the quality of the converted speech. 

End to End conversion- 

We were able to successfully convert the source waveform to the target waveform 

retaining some features of the target speaker. The output voice succeeds in retaining the 

intelligibility of the spoken sentence, however it sounds unnatural and robotic. 

Here is one example from the TIMIT test dataset (female voice) that was converted to a 

target voice (male) trained from the Arctic dataset: 

Source Target 

 

Future Work and Scope 

Increasing the performance of Net2 will be the main focus going forward. We have found 

that varying hyperparameters does not increase the performance much. Directly predicting 

the complex STFT of the target audio is expected to give a better quality of the 

reconstructed audio than only predicting the magnitude spectrum. 

We would like to explore and implement architectures used by leading models in Speech 

Generation like CBHGs used by Tacotron. 

Another direction that we can go towards is implementing a Generative Adversarial 

Network (GAN). 

   

 
14 

https://drive.google.com/open?id=1KLY6VdjbG0WECEjLs4P2W0nRyOWa_625
https://drive.google.com/open?id=18-XCF2-aEG1FpcybEvd3LkTz7E_Ekl7w


 
 

Appendix : Detailed Report of Experiments 
Net1 

Unidirectional LSTM 

Hidden Layers  Units per layer  Max. Test Accuracy (%) 

 
1 

50  68.3 

75  68.8 

 
 
2 

50  69.4 

75  70.0 

100  71.1 

 
 
3 

50  69.8 

75  70.2 

100  70.6 

 
4 

50  69.0 

75  71.1 

Bidirectional LSTM 

Hidden Layers  Units per layer  Keep probability  Max. Test Accuracy 
(%) 

 
 
4 

 
 
100 

0.9  71.8 

0.8  72.5 

0.7  72.8 

0.6  72.3 

Bidirectional GRU 

Hidden Layers  Units per layer  Max. Test Accuracy (%) 

 
1 

50  67.9 

75  69.0 

100  69.4 

 
15 



 
 

 
 
2 

50  69.9 

75  71.1 

100  70.3 

 
 
3 

50  70.4 

75  70.6 

100  70.8 

 
4 

50  70.7 

75  70.5 

 

Bidirectional GRU and Bidirectional LSTM with dropout 

Cell  Hidden Layers  Units per layer  Keep 
probability 

Accuracy (%) 

 
 
GRU 

2   
 
200 

 
 
0.6 

67.5 

3  62.2 

4  9.3 (outlier case) 

 
 
LSTM 
 

2   
 
200 

 
 
0.6 

73.5 

3  70.5 

4  69.4 

Net2 

Bidirectional GRU 

Hidden Layers  Units per layer  Keep probability  Mean Square Error 

2   
 
 
100 

 
 
 
0.8 
 
 

0.189 

3  0.187 

4  0.192 

5  0.185 

 
16 



 
 

Bi-GRU with Pyramidal Structure 

Units per layer  Keep probability  Mean Square Error 

100, 150, 200  0.6  0.181 

100, 150, 200  0.6  0.187 

61, 124, 257  0.6  0.186 

Bi-LSTM with Pyramidal Structure 

Units per layer  Keep probability  Mean Square Error 

100, 150, 200  0.6  0.164 

Bi-GRU with Multitask (mags and mels) 

Hidden Layers  Units per layer  Keep probability  Mean Square Error 

2   
 
 
100 

 
 
 
0.6 

0.383 

3  0.391 

4  0.388 

5  0.392 

Bi-GRU with Pyramidal Structure and Multitask (mags and mels) 

Num. units for mags  Num. units for mels  Keep probability  Mean Square Error 

65, 75  140, 200  0.8  0.359 

65, 75  140, 200  0.6  0.351 

100, 100  100, 100  0.9  0.384 

Bi-LSTM with Pyramidal Structure and Multitask (mags and mels) 

Num. units for mags  Num. units for mels  Keep probability  Mean Square Error 

65, 75  140, 200  0.6  0.546 

 

 
17 


